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Objectives Roadmap

This module supports the following course objectives:

Define the physical components of an
XML exchange.

Identify basic XML components that are
used in the NIEM structure.
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Module Objectives

* In this module, we will review how to:

¢ Compare and contrast XML elements and
attributes.

¢ Describe the characteristics of a well-formed
iInstance.

¢ Create an XML instance based on the given XML
schema.




What do XML tags (elements) do?

* The information in an XML document is
contained within the various tags that
constitute the markup of the document.

* Makes it easy to distinguish the information from
the markup.

¢+ Make it possible for incompatible computers,
operating systems, & applications to share
information.

¢ Allow XML to become a universal translator
between systems.




Naming Rules For XML Elements

* Can contain letters, numbers, and other
characters.

* Must not start with number or punctuation.
* Must not start with xml, XIVIL, or Xml.
* Cannot contain spaces.




Valid/Invalid Element Names

Valid

<Person_Name>
<Personl23>

<Person-Name>
<Person.Name>

Invalid

<Person_Name&:>
<123Person_Name>
<Person Name>

< Person_Name>
<Person;Name>




Other Element Naming Considerations

* Make names descriptive.

* Avoid [-] and [.] and [:] in names (dash,
period, and colon).
¢ Usually reserved for namespaces.
+ Allowed, but not a general best practice.

* Can be as long as you like.
¢ Should be descriptive and be consistently used.

* Non-English letters like “é 0 a” are legal.
¢+ Watch out for problems... may not be supported.




Root, Parent, and Child Elements

¢ First elementin an XML
document is called a root

element _——r<Person>

e Person is the name of the
element <Per50nName>

e Also the Parent element <PersonGivenName>
of “PersonName”

Marge
</PersonGivenName>
<PersonSurName>

 Parent element of Simpson
“PersonGivenName” and
el — </PersonSurName>
e Child element of “Person” </PersonName>
</Person>




XML Comments

* Examples

<Person>
<l--This is a valid comment -->
<PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<l--This is also
a valid comment -->
<Employment>
<EmployerName>Springfield Nuclear</EmployerName>
</Employment>
</Person>




Processing Instructions

Generally speaking, used to encode
application-specific data.

¢+ Most popular usage to associate presentation or
transformation files with the data.

Starts with “<?”
Ends with “?>”

Examples:

<?xml-stylesheet href="mystyle.css" type="text/css"?>

<?perl lower-to-upper-case?>




Prolog

* A special processing instruction included at
the beginning of an XML instance.

¢ Specifies version & character encoding

* Example:

<?xml version="1.0" encoding="UTF-8"?>
<Person>
<PersonName>
<PersonSurName>Flanders</PersonSurName>
<PersonGivenName>Ned</PersonGivenName>
</PersonName>
</Person>




XML Attributes

* Part of an element that provides additional
information about that element.

+ Defined as a name/value pair (Single Property for

an Element).
<?xml version="1.0" encoding="UTF-8"?>
<Person>
<PersonName nameCode="RealName">
<PersonSurName>Flanders</PersonSurName>
<PersonGivenName>Ned</PersonGivenName>
</PersonName>
</Person>




Quotation Marks in Attributes

* Values must always be enclosed in quotes.
¢ Either ‘single’ or “double” quotes can be used.
¢ Double quotes most common

¢+ |f value contains single quotes, it is necessary to
use double quotes.




Attributes Quoting Examples

<Person>
<PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<Sourcelist name="Moe's Tavern Bowling Team"/>
</Person>
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Attribute Usage

* No concrete rule to differentiate attribute
usage from element usage.

* Ultimately, it is a subjective decision

¢ If it seems like data, it is an element.

¢+ |f it seems like a description of data, it is an
attribute.

* The deciding factor might be that you do not
put “content” in an attribute.
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Element vs. Attribute

An element can be any data type
An attribute is just a string.

An element can have other elements or
attributes nested inside of it.

An attribute cannot have an element or
attribute nested inside of it.
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Exercise 2.1: Attribute or Element?

* Are the following items Attributes or
Elements, and why?
¢ Name
¢ Measurement Units
¢+ Age
¢ Reliability
¢ Accuracy




Solution 2.1: Attribute or Element?

* Name (Element)

¢ How name is represented can vary significantly. It can be a simple name
or a structured name.

* Measurement Units (Attribute)
¢ Generally it is a quantifier. E.g., speed would use an attribute such as this
to designate MPH (Miles per Hour, Foot-Pounds, Newton Meters, etc.)
* Age (Element)

¢+ Besides potentially needing to be extended to represent a range instead
of a discrete age, qualifying the age would be easily done with something
like a measurements attribute from above. E.g., Years, Days, Months.

* Reliability (Attribute)
+ It will typically qualify something else, like a statement of fact.

e Accuracy (Attribute)

+ It will typically qualify something else, like a measurement of something.
E.g., 20 MPH +/- 5.
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Well-formed XML ;..

* An XML instance (document containing XML
tags and content) with correct syntax as

defined by the XML standard is referred to as
being “well-formed.”

* “Well-formed” refers only to the structure
and syntax of the XML.
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Well-formed XML ...

 A"well-formed" XML document instance has
correct XML syntax.

° |tis a document that conforms to the XML
syntax rules.

A well-formed document is one that meets
the minimum criteria for XML parsers to read
the document.
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Rules for Well-formed XML ..

* XML declaration (Prolog) must come first in
every document.

* Comments are not valid within a tag.

* Comments may not contain two hyphens in a
row other than the beginning and end of the
comment.

* Tags must have an end tag, or be closed
within the singleton tag itself, for example
<PersonAge/>
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Rules for Well-formed XML ..

* All attributes of tags must be quoted.

* Preferably double quotes, unless attribute
contains a double quote (then use single quotes).

* Every XML document must contain one root
element that completely contains all the other
elements.

* Tags cannot overlap — must nest correctly.

23



Exercise 2.2: Find the Errors

<Root>
< PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<Employment/>
<EmployerName>Springfield Nuclear</EmployerName>
</Employments>
</Root>
<Residence>
<LocationAddres>
<StreetAddress>100 Industrial Way</StreetAddress>
<LocationCityName>Springfield</LocationCityName>
</LocationAddress>
</Residence>
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Solution 2.2: Find the Errors

<Root>
< PersonName> J Invalid whitespace in tag
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName> “/>” in a non-empty element*
<Employment/> '
<EmployerName>Springfield NucIear</EmponerName>

</Employments> Mismatched ending tag
< >
/R0.0t More than 1 root. Should be inside Root
<Residence> !
<LocationAddres> Mismatched starting tag

<StreetAddress>100 Industrial Way</StreetAddress>

<LocationCityName>Springfield</LocationCityName>

</LocationAddress>
</Residence>

Mismatched ending tag
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What is an XML Instance?

* When you use the rules of an XML schema to

create content, the result is an XML document
Instance.

* The schema controls what the instance looks
like and what is in it.

¢ j.e,, it is the blueprint for what an XML instance
can look like.




PersonName Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetnamespace="http://myNamespace.com"
xmins:xs="http:/lwww.w3.0rg/2001/XMLSchema">
<xs:complexType name="PersonNameType" >
<xs:sequence>
<xs:element name="PersonNamePrefix" type="xs:string" minOccurs="0"/>
<xs:element name="PersonGivenName" type="xs:string" minOccurs="0"/>
<xs:element name="PersonMiddleName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="PersonSurName" type="xs:string"/>
<xs:element name="PersonSuffixName" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="PersonNameCode" use="optional" default="RealName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="RealName"/>
<xs:enumeration value="Alias"/>
<xs:enumeration value="BirthName"/>
<Ixs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="PersonName" type="PersonNameType"/>
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Resulting Example Instance

<?xml version="1.0" encoding="UTF-8"?>
<PersonName PersonNameCode="RealName">
<PersonNamePrefix>Mr</PersonNamePrefix>
<PersonGivenName>Juan</PersonGivenName>
<PersonMiddleName>Anna</PersonMiddleName>
<PersonSurName>Tu</PersonSurName>
<PersonSuffixName>Sr</PersonSuffixName>
</PersonName>




Exercise 2.3: Instance

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmins:local-ns="http://myNamespace.com"
xmins:xs="http:/lwww.w3.0rg/2001/XMLSchema">
<xs:element name="Location">
<xs:complexType>
<xs:sequence>
<xs:element name="LocationName" type="xs:string" minOccurs="0"/>
<xs:element name="LocationAddress">
<xs:complexType>
<xs:sequence>
<xs:element name="AddressFullText" type="xs:string" minOccurs="0"/>
<xs:element name="LocationCityName" type="xs:string" minOccurs="0"/>
<xs:element name="LocationStateName" type="xs:string"/>
<xs:element name="PostalCodeText" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema> 22




Solution 2.3: Instance

<?xml version="1.0" encoding="UTF-8"?>
<Location
xmlns:my="http://myNamespace.com"
xmlns:xsi=
xsi:schemalocation="Path to schema" >

<LocationName>Charville Farmhouse</LocationName>

<LocationAddress>
<AddressFullText>421 Bath Rd</AddressFullText>
<LocationCityName>Charville</LocationCityName>
<LocationStateName>Utah</LocationStateName>
<PostalCodeText>83405</PostalCodeText>

</LocationAddress>

</Location>
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Module Summary

* In this module, we reviewed how to:

¢ Compare and contrast XML elements and
attributes.

¢ Describe the characteristics of a well-formed
iInstance.

¢ Create an XML instance based on the given XML
schema.
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